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Diagnostics and Prognostics Based on Adaptive 
Time-Frequency Feature Discrimination 1 

Jae Hyuk Oh, Chang Gu Kim, Young Man Cho* 
School o f  Mechanical and Aerospace Engineering, Seoul National University, 

Seoul 151- 742, Korea 

This paper presents a novel diagnostic technique for monitoring the system conditions and 

detecting failure modes and precursors based on wavelet-packet analysis of external noise/ 

vibration measurements. The capability is based on extracting relevant features of noise/ 

vibration data that best discriminate systems with different noise/vibration signatures by 

analyzing external measurements of noise/vibration in the time-frequency domain. By virtue of 

their localized nature both in time and frequency, the identified features help to reveal faults 

at the level of components in a mechanical system in addition to the existence of certain faults. 

A prima-facie case is made via application of the proposed approach to fault detection in scroll 
and rotary compressors, although the methods and algorithms are very general in nature. The 

proposed technique has successfully identified the existence of specific faults in the scroll 

and rotary compressors. In addition, its capability of tracking the severity of specific faults in 

the rotary compressors indicates that the technique has a potential to be used as a prognostic 

tool. 

Key Words: Diagnostic, Wavelet Packet, Time-Frequency Analysis, Noise and Vibration, 

Rotary Compressor, Scroll Compressor 

I. Introduct ion 

It has become an industry standard to provide 

parts and service warranty for durable products. 

It is not a surprising trend that a good warranty 

plan is not a market discriminator any longer 

but a market enabler. However, ever-increasing 

warranty or repair costs are directly reflected 

into the product price, which puts tremendous 

pressure on manufactures to develop efficient, 

reliable but still low-cost diagnostic/prognostic 

methodologies. To reflect on such a trend, the 

topic of diagnostic/prognostic has been extensi- 
vely studied in recent years in several disciplines 
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(Harrap and Wang, 1994 ; Cann, 1992 ; Meng and 

Qu, 1991 ; Thompson, 1983 ; Kim and Kim, 2000 ; 

Park and Lee, 1999 ; Park, 2000 ; Shim and Suh, 

2002; Tahk and Shin, 2002). These diagnostic 

techniques have achieved remarkable successes 

in their specific applications. They can be classi- 

fied based on the identification algorithms that 

unravel discriminating features. 

Raw data from a mechanical system rarely ex- 

hibits discriminating feature (s) but buries the 

features. As a result, much identification work is 

focused on mapping relevant physical events to 

their signatures in the measured data. The data 

(signals) are measured in t ime-domain and are 

easily converted to frequency domain (FFT) ,  

where the analysis manifests some of the hidden 

features. However, certain physical events are 

not discernable in the classical approaches, since 

they are projecting essentially two-dimensional 

(time-frequency) information to one-dimension- 
al (either time or frequency) subspace. Indeed, 
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Meng and Qu (1991) used the celebrated Wigner 

distribution to detect a fault in rotating mac- 

hinery. However, signal interference still deteri- 

orates the resolution of the Wigner distribu- 

tion, although alleviated by judicious selection 

of kernels. Wavelet analysis is the modern ap- 

proach to time-frequency analysis that has drawn 

much attention in recent years. However, the com- 

mercially available tools for wavelet analysis 

(e.g., MATLAB toolbox, Wavelab, etc.) do not 

offer the resolution necessary for multiple feature 

identification in the frequency range necessary 

in certain diagnostic applications (Misti et al., 

1996). Furthermore, while wavelet analysis can 

sometimes detect a specific, a priori known fea- 

ture, it cannot be used in the general, multiple 

fault detection setting of realistic diagnostic/ 

prognostic applications. 

We propose a new feature identification me- 

thodology based on the more general wavelet- 

packet ideas, which can be subsequently com- 

bined with other classification techniques (e.g. 

neural network) to realize an efficient and reli- 

able diagnostic tool. It provides fault classific- 

ation algorithms with a qualitatively better tool 

that enables revelation of previously hidden fea- 

tures. The underlying key idea is to mass-pro- 

duce alternate representations of a given signal, 

and then select the one that is best according to 

a certain metric (Euclidean distance or entropy). 

Using a dynamic programming approach, a best 

discriminating basis is obtained. Then we can 

rank the basis functions (waveforms) with respect 

to their contribution to the optimal (maximal) 

cost. By virtue of the t ime-and frequency-loca- 

lized nature of wavelet-packets, the fault signa- 

tures can be identified at the physical component 

level. Considering that any practical diagnostic/  

prognostic technique has to rely on readily avail- 

able measurements (e.g., external measurements 

obtained non-invasively) from which the compo- 

nent-level information is generally difficult to 

extract, such a capability provides the proposed 
technique with potential to complement the exis- 
ting suite of diagnostic/prognostic techniques 

that yield fault or no fault information only. 

The proposed technique is applied to discri- 

minate between normal and different faulty com- 

ponents of scroll and rotary compressors. We 

achieve this aim by altering certain key com- 

ponents of a compressor and then measuring the 

external shell-vibrations (so-called seeded fau- 

lts). The algorithms developed in this paper find 

the features that discriminate the modified com- 

pressor signal against the recorded baseline. They 

are related to physical components and behaviors 

in the compressor. In the demonstration we use 

compressor-shell vibrations and sound radiations 

(external measurements). These external measure- 

ments reveal faults at the physical component 

level by virtue of wavelet-packet analysis. Thus 

we have proven that our technique can be built 

around data collected with external accelerome- 

ters (noninvasive) and still can provide fault in- 

formation at the internal component level, which 

is typically available only by disassembling the 

compressor ( tear-down approach).  The tech- 

nique is also shown to track the severity of the 

faults, which indicates that it has potential to be 

used as a prognostic tool. 

Section II briefly reviews the technical hud- 

dles of the existing techniques when applied in 

feature identification. Section III  describes adap- 

tive time-frequency analysis on which our pro- 

posed feature identification algorithm is based. 

In Section IV, the proposed technique is shown 

to identify faults in scroll and rotary compres- 

sors. 

2. Technical Challenges in Feature 
Identification 

Classical methods of  feature identification rely 

on either time-series or spectral analysis of the 

signal. These approaches have their own limi- 

tations since the time-series data in itself is in- 

comprehensible and the spectral data lacks in- 

formation about the time localization of  impor- 

tant events. A compromise is the short time (or 

windowed) Fourier analysis, but this technique 
is very limited in time localization. The energy of 

a signal measured off a rotary compressor shell 

is represented in Figure 1. 

An alternative is to know (guess) a parametric 
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Time (top), frequency (right) and time-fre- 
quency representations of the same signal. All 
plots represent energy. The time-frequency 
plot exhibits many more features than the 
other two 

representation of the features one is looking for, 

and then to detect their presence and strength. 

However, it is unrealistic to assume that such a 

parametric representation is known a priori or 

can be guessed with acceptable accuracy in a 

wide variety of applications, where the features 

can have very different signatures. 

Instead, we choose to perform the feature iden- 

tification in the so-called time-frequency repre- 

sentation of the signals, which is the systematic 

setting for generic feature identification. Again, 

there is a choice: the classical approach is the 

scalogram, used, e.g., in the analysis of speech. 

Due to a fundamental result (akin to the Heis- 

senberg uncertainty principle), such a represen- 

tation contains so-called ghost features, which 

are artifacts of the numerical method (Choi 

and Williams, 1989). The chosen alternative is to 

build the representation from a basis of ortho- 

gonal waveforms, and the basis is chosen to "suit" 

the signals. If the available set of waveforms is 

rich enough, the chosen basis elements will re- 

cover information about the physical behavior of 

the generating components. The simplest example 

is the well-known Walsh system. 

Such an approach is difficult because of two 

factors : First, there is no unique time-frequency 

gh~m I1~,¢ FT-I 

1!I 
Different possible time-frequency represen- 
tations of the same signal. In this case there 
are 21°24~ 10 a°° distinct o rthogonal representa- 

tions using one generating shape function. 
Energy is plotted on in gray-scale using the 
software by Coifman and Wickrhauser (1992) 

representation, as seen in Figure 2. which makes 

it necessary to build selection criteria. 

Second, the number of such representation is 

exponentially increasing as a function of the 

sample length, which makes brute-force search 

impossible. However, efficient numerical algo- 

rithms have been developed to overcome these 

difficulties. 

As seen in Figure 2. the wavelet representation 

of the signal does not reveal more than its classi- 

cal competitors. The salient point is the fact that 

there is an optimal representation of this sample 

signal, as illustrated in Figure 3. 

The important point is what is understood by 

a "best" representation. In classical applications, 

called "best basis wavelet packets", developed by 

Coifman and Wickerhauser (1992), "best" refers 

to storage needed to reproduce (approximately) 

the signal. In this case, the objective is to find 

"crisp" features, which turns out to be related to 

the efficient information storage problem. How- 

ever, finding crisp details of signals is not the 

goal of feature identification. Essentially, we want 

to find the distinguishing features between classes 

of signals, and thus we need to find crisp details 

of differences between those signals. This ap- 

proach is used for both source identification and 

diagnostics. Saito (1994) adopted this idea and 
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and frequency-resolution, not present in the 
representations of Figure 2 

developed local feature classification and re- 

gression based on best basis wavelet packets and 

applied these to classify t r iangular  waveforms in 

the presence of noise, which is further developed 

in this paper. 

3. Adaptive Time-Frequency 
Analysis 

We adopt the generic wavelet-packet  analysis 

framework. The key idea behind this analysis is 

to "mass-produce"  alternate representations of  a 

given signal, and then to select the one that is best 

according to a certain metric. 

3.1 Wavelet  packets  
The representations are obtained by hierar- 

chically splitting the signal into a coarser ver- 

sion and a correction as shown in Figure 4. With 

the aid of one-level  wavelet decomposi t ion this 

can be done in a computa t ional ly  efficient and 

stable manner.  Mathematically,  this is equivalent  

to replacing any given waveform by its coarser 

version and a correction. In fact, the correct 

statement is that each basis of waveforms can be 

substituted with two "smaller" bases, conta in ing  

Kim and Young Man Cho 

Fig. 4 Four wavelet packet decomposition trees. 
Upper left : standard time-series basis ; upper 
right : frequency only (Fourier-type) basis ; 
lower left: standard wavelet basis; lower 
right : an arbitrary wavelet packet basis. Cir- 

cles in each tree represent bases of waveforms, 
while the dark circles in each tree indicate the 
chosen basis waveforms of the specific tree. 
Each pair of arrows represents the l-level 
wavelet decomposition 

"coarse grain" and "higher frequency" waveforms 

respectively. In this process there is no infor- 

mat ion  loss, since the signal can be represented 

in either the original  basis, or the un ion  of  the 

two children-bases.  Thus we obta in  a b inary  tree 

of bases in which each node spans the same 

signals as its two children. 

The selection of a part icular  basis is related 

to the cost of  representing a specific signal. 

The signal s ( l )  is represented in a basis / ' =  

{ ~kf(t) }~,B(r~ by the vector of inner  products. 

s£= fs(t) el(t) dt, j ~ B ( F )  

where B ( F )  is the b inary  tree of the basis. The 

cost of  the representation is any positive and 
additive functional,  such as or c ( f f ) ~ . ~  s~ 12 

or c ( f )  = - 5 2 ,  I sY I log I sJ" I. The latter expres- 
J B(. '3 

sion uses normalized coefficients and it is usu- 

ally called the entropy of the representation. 

Such cost functions permit the compar ison of 

the parent  and children bases at each node of the 

decomposi t ion tree. Let f~, -Pz be the chi ldren 

of a basis ft. Due to or thogonal i ty  of  the wavelet 

step, their un ion  spans exactly the same space 

as their parent, and due to the additivity of the 

cost function, c (fa U f2) = c ( ~ )  q- c (F2). This  
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provides the possibility of comparing the parent 

basis to the children bases. A dynamic program- 

ming algorithm can efficiently select the basis that 

best represents the signal, sweeping bottom-top 

through the wavelet-packet decomposition tree 

in O(N) operations (N is the length of the 

original signal). Due to the implementation of 

the wavelet transform computing the coefficients 

sJ" for all bases in the decomposition tree (also 

called the time-frequency energy map) is also 

done in optimal complexity. These features are 

critical for efficient implementations of the algo- 

rithms. 

Note that the notion of "best" depends on the 

choice of the wavelet decomposition and the 

additive cost function. 
The entropy cost function is particularly useful 

because it chooses representations in which a 

few waveforms (basis functions) concentrate most 

of the signal's energy. These waveforms match 

the dominating features of the signal (or provide 

a best orthogonal match): the waveforms with 

highest energy content correspond to the top or- 

thogonal features of the signal. A pertinent ana- 

logy is the Singular Value Decomposition (SVD) 

of a matrix of column vectors, where the top 

singular values signal out the most important 

features (singular vectors) (Golub and Van Loan, 

1996). 

3.2 Discriminating features 
Next we show how the best wavelet packet 

technology is used to find discriminating features 

among classes of signals. For simplicity, imagine 

two signals, &(t), s2(t). The best basis for one 

of them is not necessarily a good basis for the 

other. However, the best basis for the difference 

st(t)--sz(t)  highlights the features that discri- 

minate between the signals. A second intuition is 

that white noise, which is expected to perturb 

any measured signal, is not well represented in 

any wavelet-packet basis, i.e., white-noise fea- 

tures will have a relatively low energy content. 

Discriminating feature extraction is performed 

in the following setting: Assume that we are 

given classes of signals (xC(t) }i=1,..., ice) where 

c = l  . . . . .  C represent the class index and I(c)  is 

the number of training signals used to extract 

discriminating features. For each class c and basis 

F in the decomposition tree, we compute the 

average time-frequency energy map : 

s f ( c ) - -  l . y, fx~(t) ~ f ( t )  dt 
I ( c )  i=1, ..., , ,~ . ,  

For any two classes, we compute a distance be- 

tween the time-frequency energy maps: 

Dr(c,, cz)= ~. d(s5(c,) ,  st(c2)) 
j~B(I') 

where d (x, y) is an additive scalar cost function, 

such as l : - :  l or xlo  - + .Final- 

ly, the cost (discriminant power) of the basis is 

given by summing over all classes : 

Zx(I') = 52, Dr(c~, c2) 
l<_Cl<C2<_C 

Using the additive cost function A, we employ the 

same dynamic programming technique to select 

the best discriminating basis, preferably with re- 

spect to the symmetric entropy cost. Note that we 

want waveforms that maximize the differences 

between the classes, thus we need to maximize the 

cost function. 

Once a best discriminating basis is obtained, 

we can rank the basis functions (waveforms) 

with respect to their contribution to the optimal 

(maximal) cost. Because we optimize over a very 

large number of waveforms, we hope that those 

that are most discriminating ones contain infor- 

mation at physical level, i.e. are illustrations 

of the discriminant physical mechanisms respon- 

sible for the different classes. Since the waveforms 

are localized in both time and frequency, and 

do not contain ghost features or artifacts, the 

information about the nature and timing of the 

discriminating events should isolate the event. 

Of course, there is no guarantee that a one- 

to-one matching between discriminating wave- 

forms and physical events exists ; e.g., the discri- 

minating physical features may not be orthogon- 

al, while all the waveforms have this property. 

In such a case, the most discriminating features 

will be combinations of the most discriminating 

waveforms. However, the algorithm still has value 

because it drastically reduces the dimensionality 

of the identification problem. However, tests on 



1542 Jae Hyuk Oh, Chang Gu Kim and Young Man Cho 

. . . . . .  -J ii! ....... - ...................... i 

: L  . .  ~ z ,  , ~  . . . . .  

l l n~  [sampi~] ) i1~ [~rl~ples i 

Fig. 5 Averages of three classes of signals (left) 
and the top three discriminating waveforms 
(right). The wavelet-packets are based on the 
18 vanishing moments Daubechies wavelets. 
Other wavelets have been tested and, although 
the quality of the physical features varies, all 
of them display the same essential characte- 
ristics 

the demonstration signals produced excellent re- 

sults. Figure 5 shows the averages of raw signals 

from three different classes of rotary compres- 

sors (about which more will said in Section 

IV). Although the signals look quite similar 

(the same dominant behavior) in time domain, 

the discriminating waveforms are very different, 

which give precise indication about the distingui- 

shing characteristics of the signals, as described 

in Section IV. 

3.3 Classification 

Once we have a set of discriminating wave- 

forms, we can also attempt to classify new signals. 

Classification is the basis of passive diagnostics. 

Furthermore, the classification procedure can be 

adapted to include the normal, gradual wear- 

and-tear changes in the baseline behavior. The 

discriminating waveforms are associated with the 

presence or absence of discriminating features. 

Projecting an unclassified signal onto a waveform 

will give a measure of the existence of the corre- 

sponding feature. In fact, for classification pur- 

poses, it is not necessary to understand the rela- 

tionship between the discriminating waveforms 

and physical events. 

Let A be the N x k  matrix whose columns 

are the coefficients of the top k discriminating 

waveforms. If we want to separate C classes, we 

need k-< C - 1  such waveforms. The columns of 

A span the feature-space and the signals used 

for building the best discriminant basis are used 

- -  ~ r - ( , - -  ~ r . . . . . . . .  [ i 

. . . . . .  i !  . . . . . .  = " ; ~ : :  i . . . .  I '  
- r ' - - v  - -  ' . . . .  i . . . . . . . . . . . . . . . . . .  i 
r - * -  ~ J 

i 

' -  - r  J r ~  - - - ~  [ -  - , -  - ~ ~_  L 

i . . . . .  i 

Tra i r~ng  S tage  C lass i f i ca t i on  b~age  

Fig. 6 A flowchart for training stage (left) and 
classification stage (right) using adaptive time 
frequency feature discrimination 

to define subsets (regions) in this k dimensional 

space. The region associated with the class c is 
T c defined by the set R ( c ) = {  A x~ }~=1,.....c~. 

Note that the component-wise (Arxg) i = 

xf ( t )  the need to f~ ( t )  dt, which eliminates 

use the wavelet transform and the decomposi- 

tion tree for projection onto the best basis. Build- 

ing A and the sets R(c) ,  c = l  . . . . .  C is the 

learning or training phase of the classification 

algorithm. 

The classification of an unknown signal x( t )  
is done by projecting it onto the feature space 

and assigning it the class to which it lies closest. 

Again, projection is a simple matrix multiplic- 

ation f----Arx, and classification is 

c (x) = a r g  m i n d  (f, R (c)) 
c 

where d is any "distance" algorithm that ranges 

from the simple Euclidean norm (between two 

vectors) to the distance computed from neural 

networks. 

Finally, Figure 6 summarizes the overall pro- 

cedure for training and classification using the 

proposed technique. 

3.4 Pilot implementation 

A pilot program that implements the best 

discriminating basis algorithm was coded in 

MATLAB. It was used to produce the experi- 

mental results described in Section IV. 

The pilot implementations demonstrates the 

following : 

* The numerical algorithms can be efficiently 

implemented 

• There is no need for specialized library func- 
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tions, thus it is feasible to embed the algorithms 

on dedicated chips 

• The memory requirement for the training 

phases is O ( k N ) ,  where k is the maximal num- 

ber of training signals in any class. The require- 

ment for the simple classification rules actually 

needed in the demonstrations is O(_N). In the 

demonstrations we used N = 2 5 6  . . . . .  1024 and 

k = 1 0  . . . . .  45 

Such low computational complexities of the 

proposed technique are extremely important when 

it is necessary to apply the technique on-line, e.g., 

in the factory production line. 

4. Experimental  Results  on Rotary 
and Scroll  Compressors 

The newly developed feature identification 

technique based on adaptive time-frequency fea- 

ture discrimination has potential to identify faults 

without explicit information on internal mea- 

surements. The feasibility of the technique is 

demonstrated with scroll and rotary compressors. 

Various faults commonly encountered in the field 

are seeded to the compressors, whose externally 

accessible noise, vibration, and pressure signals 

are recorded to examine whether the (seeded) 

faults can be identified based on the external 

measurements alone. For this purpose, two sets 

of measurements are required : 

1. The first set of signals is used as a template 

for training and is pre-identified with different 

faults. 

2. The second set of signals is used to examine 

whether the algorithm can match the signals with 

the corresponding faults (validation). 

4.1 Scroll compressors 
Dozen welded-shell scroll compressors with or 

without seeded faults were constructed in an effort 

to develop a diagnostic/prognostic technique. 

The seeded faults were chosen to represent typical 

faults in the field and consist of: 

1. Back chamber pressurization flaw 

2. Thermal valve failure 

3. Scroll machining defect 

4. Orbiting scroll bearing defect 

5. Contamination (weld spatter) 

For each fault, two compressors were con- 

structed to examine repeatability and robustness. 

In addition, two baseline compressors without 

any apparent fault were constructed. Since our 

eventual goal was to perform factory diagnostic, 

the instrumentation was selected in such a way 

that they might be readily installed in the factory. 

In addition, the test was designed in such a way 

that it might be performed in the factory without 

any serious problem. An air test was performed 

with each compressor, which was monitored with 

the following sensor readings 

1. 1/rev 

2. Radial accelerometer #1 (ms -z) 

3. Radial accelerometer #2 (ms -z) 

4. Axial accelerometer (ms -z) 

5. Acoustic emission (V) 

6. Pressure pulsation (psi) 

7. Microphone (V) 

The data was sampled at 24 kHz over 40 

compressor cycles. The first task is to synchronize 

the data from different compressors that are not 

necessarily aligned. This is necessary since the 

proposed approach relies on both time and fre- 

quency information. The 1/rev signal measures 

the crank angle that indicates which state in the 

cycle a compressor is operating. For each mea- 

surement, 40 synchronized cycles are obtained 

using the 1/rev signals. Since the cycle length 

varies over time, the corresponding measurements 

are decimated or interpolated accordingly to ob- 

tain measurements with the equal cycle length. 

Once the measurements are synchronized, the 

next step is to detect existence of any fault and 

furthermore to identify the type of the fault if 

there exists, based on the above measurements. 

We have experimented with various sensor re- 

adings to examine which of the sensor readings 

result in the best discrimination of faults. The 

pressure pulsation turns out to be the best one and 

is first described in the following. 

Pressure pulsation readings were taken from 

four compressors with different faults or no fault : 

baseline, back chamber pressurization flaw, ther- 
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mal valve failure and scroll machining defect. The 

40 cycles of the pressure readings from three 

compressors (baseline, back chamber pressuriza- 

tion flaw, and thermal valve failure) were used to 

train the algorithm, which in turn automatically 

extract the best discriminating features. Then, the 

components of the two best discriminating fea- 

tures are computed in each cycle of the pressure 

readings and plotted inside circles (each mark 

inside a circle indicates the component of a dis- 

criminating feature for a cycle of pressure read- 

ing) along x- and y-axis in Figure 7. The clear 

separation among three groups of marks in circles 

shows that the algorithm is capable of identifying 

discriminating features. It should be noted that 

the small scatter among the same mark indicates 

that the algorithm is robust to cycle-to-cycle 

variation, e.g. sensor noise. 

Then, the pressure readings from three new 

compressors with the same three faults were fed to 

the algorithm in order to examine whether it is 

able to classify which type of faults each com- 

pressor displays. The results are plotted with 

marks in diamonds, which show that the com- 

ponents of each discriminating feature from the 

compressors with the same type of faults are very 

similar. Consequently, the corresponding marks 

in a circle and a diamond cluster together, far 

from others, which indicates that the algorithm is 

capable of classifying compressors with different 

faults. Note that the discriminating features are 

from the training sets of pressure readings. 

When the diagnostic/prognostic tool is used in 

the field, it is unrealistic to assume that all the 

faults are known a priori. It is interesting to see 

how the proposed algorithm classifies unknown 

faults. It would be ideal if the algorithm classifies 

the unknown faults as unknown. In other words, 

the components of the unknown faults along x- 

and y-axis should be different from the known 

faults so that the marks from the unknown faults 

would not cluster together with those of known 

faults. For this purpose, the pressure readings 

from a compressor with scroll machining defect 

were fed to the algorithm (without re-training the 

algorithm for scroll machine defect). The marks 

in a square with a label "scroll machine defect" in 

Figure 7 show that the algorithm indeed detects 

the existence of an "unknown fault" (scroll ma- 

chine defect). 

The full discriminating power of the two 

features is illustrated in Figure 8. Note that while 

bearing faults are also well discriminated, the 

weld-splatter contamination is not. We are now 

probing the limits of the algorithm, asking to 

distinguish 6 classes of compressors with only two 

waveforms that were obtained from training the 

4 ~  I . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 
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Fig. 7 Components of two discriminating features in 
the pressure readings of compressors with 
different faults 

.N, 

Fig. 8 Scattering of all the scroll compressor seeded 
fault data. The values along x- and y-axis 
indicate the components of the compressor 
data along the two discriminating features 
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algorithm on three classes. 

So far, the results from the pressure readings 

were explicitly shown in evaluating the perform- 

ance of the proposed algorithm. However, it is 

easily imaginable that the results would be quite 

different with different sensor readings. In order 

to support such an observation, the same training 

and testing procedure used for pressure readings 

is applied with acoustic emission (AE) readings. 

Figure 9 shows how the discrimination and clas- 

sification with AE readings fail. Of course, this 

does not imply that the AE readings are gener- 

ally inadequate in diagnostics. It simply indica- 

tes that the careful design of instrumentation is 

crucial to the success of diagnostic/prognostic 

even with the same algorithm since it directly 

impacts the information contents of the sensor 

readings. 

4.2 Rotary compressors 
A bolted-shell rotary compressor was con- 

structed to measure internal acceleration and 

pressure by placing sensors both internally and 

externally. Although we utilize only external mea- 

surements for feature identification, the internal 

measurements were also taken for the purpose of 

verification. Figure l0 shows sensors for external 

measurements. 

Once all the internal and external transducers 

were in place, the bolted-shell compressor was 

Fig. 10 Instrumentation for external measurements 

a24, a25, and p8 in a rotary compressor 

run at the ARI condition for data collection. A 

24-channel HP data acquisition system was used 

to collect the internal and external time data from 

18 transducers simultaneously for 1 second at a 

32768 Hz sampling rate. The signals from the 

24-channel test were decimated in MATLAB to 

obtain the sample rate of 16384Hz. The data 

serve as the baseline for a methodology valida- 

tion. Two more data sets were successively col- 

lected under the same condition after modifying 

one internal component of the compressor at a 

time : 

1. Muffler : one hole muffler to two hole muf- 

fler (modification I) 

2. Valve stop without curvature to the one 

with curvature (modification II). 

Then the criterion for validation is whether 

the proposed technique is capable of identifying 

the modification (s) made to the compressor from 

the external measurements (e.g. shell vibration). 

The accelerometer a24 attached to the com- 

pressor as shown in Figure 10 was used to mea- 

sure the shell vibration at the midpoint of the 

widest span between the crankcase welds. From 

a24 readings collected from three different bolted- 

shell rotary compressors (baseline, muffler-modi- 

fied, valve stop modified), the features are identi- 
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fled in the time-frequency domain that best 

discriminate the different compressors. Since the 

features discriminate three compressors best, they 

can be used to trace back the root causes of the 

differences and thereby to identify the modifi- 

cations (faults in the context of diagnostics). 

Again, the data from different compressors are 

synchronized first. One of the internal measure- 

ments, magnetic pick-up at the crankcase, mea- 

sures the crank angle that indicates which state 

in the cycle a compressor is operating. The mag- 

netic pick-up is used to define a cycle. For each 

a24 measurement, 40 synchronized cycles are 

obtained, which are used to train the algorithm. 

The discriminating waveforms are obtained to- 

gether with their contributions to a24 measure- 

ments. Figure 5 shows the averages of raw signals 

from three different classes of rotary compressors 

and the corresponding best discriminating wave- 

forms. 

Figure 11 shows the three best discriminating 

waveforms and their contributions. Judging from 

the relative contributions, it is clear from the 

figure that the baseline and the modification I 

compressors are best discriminated by the feature 

#3. The feature #2 discriminates the baseline and 

the modification II compressors best. These two 

features are further examined since they are the 

clues to the root causes of differences in shell 

Feature #3 

o6. 
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Feature #2 Feature # I 

Fig. 11 Contribution of features in a 3-dimensional 
feature space. The values along the x-(Fea- 
ture #1), y- (Feature #2) and z-axis (Feature 
#3) indicate the components of the com- 
pressor data along the three discriminating 
features 

vibration. The feature #3 turned out to be repre- 

sentative of pressure pulsation (centered around 

600 Hz) while the feature #2 resembles the wave- 

form of the valve stop ringing (centered around 

2000 Hz). These matches could be found relative- 

ly easily in our case, since the internal mea- 

surements were available including the pressure 

pulsation and valve stop ringing. The root causes 

of the differences in shell vibration are traced 

back to muffler and valve stop since they are 

responsible for pressure pulsation and valve stop 

ringing. The diagnostic technique based on the 

proposed approach indeed identified the modi- 

fications to the compressor, which is surprising in 

that only external measurements (a24) were used 

in the analysis. Also it should be noted that the 

information on the internal measurements is not 

crucial to the success of the proposed approach 

although they were used to identify the discri- 

minating waveforms. Since the discriminating 

waveforms are well localized both in time and 

frequency, the root causes can be identified by 

simultaneously examining 1) the crank angle 

when the discriminating waveforms are active and 

2) the frequency content of the discriminating 

waveforms. 

The successes with the scroll and rotary com- 

pressors have led us to examine whether the pro- 

posed technique has potential to be used in pro- 

gnostics. In other words, it is interesting to test its 

capability of tracking the faults or discriminating 

the severity of faults. Eight rotary compressors 

were built en route to answering this question: 

1.2 baseline compressors built in the laboratory 

2.2 baseline compressors built in the factory 

line 

3.4 compressors with roller faults : 2 scratched 

and 2 scored 

The scored roller is more severely damaged 

than the scratched one. The roller fault is one of 

the most frequently encountered faults in the field. 

Four baseline compressors were built in two dif- 

ferent locations at two different instants in order 

to establish the level of lot- to-lot  variations. If 

the lot-to-lot  variations are more pronounced 

than the differences between baseline and faulty 
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compressors when evaluated with the identified 

discriminating features, the proposed technique 

cannot be deemed very practical. An air test was 

performed with each compressor and only exter- 

nal measurements were taken from each of the 

eight compressors: accelerations, pressure, and 

electric power. The same data-processing proce- 

dure used earlier in scroll and rotary compressors 

were adopted to generate 40 synchronized cycles 

of acceleration signal for each of the eight com- 

pressors. Then, the acceleration signals from one 

lab-built  baseline compressor and one scored- 

roller compressor were used to train the algorithm 

and to identify discriminating features. 

Figure 12 shows contributions of two discri- 

minating features in acceleration readings of the 

eight compressors. Clearly, the proposed algori- 

thm is capable of distinguishing the two com- 

pressors with severe faults (score on roller) from 

the baseline compressors. In addition, the cluster 

of the scratched-roller compressors is well separa- 

ted from those of the scored-roller compressors 

and the baseline compressors. In fact, it lies 

between the clusters of the scored-roller compre- 

ssors and the baseline compressors. Such obser- 

vations have very important practical implica- 

tions: the proposed technique can identify the 

degree of severity of same fault and can map the 

degradation path (the contributions of the two 

features reveal the state of the compressor in the 

k Fa/~'~ry -~.v Baseline 
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Fig. 12 Contributions of two discriminating features 
in the acceleration readings of the eight 
compressors 

degradation map). Finally, it should be noted 

that the contributions of the baseline compres- 

sors from different production lots cluster togeth- 

er, which shows that classification is robust to 

lot-to-lot variations. Although not a statistically 

meaningful proof, these observations indicate 

that the proposed technique has potential to be 

used in predicting faults (prognostics). In this 

case, the discriminating features would be failure 

precursors. 

5. Concluding Remarks 

In this paper, a new feature identification me- 

thodology has been proposed based on the gener- 

al wavelet-packet ideas. The best discriminating 

features are computed in a numerically efficient 

manner via dynamic programming, which tre- 

mendously reduces computational burden. The 

resulting features bear information not only for 

fault classification but also for root-causes of 

faults at the component level by virtue of their 

time-frequency localized nature. Due to the rather 

stringent constraint that any practical diagnostic/ 

prognostic technique has to rely on readily avail- 

able measurements (often external vibration or 

sound), the proposed technique has potential to 

complement the existing diagnostic/prognostic 

techniques that provide fault or no fault in- 

formation only. Applications of the proposed 

technique to scroll and rotary compressors show 

its viability in a real-world application. It is 

currently being applied to Carrier compressor 

factory line in an effort to reduce warranty cost. 
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